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1. Introduction

Air  Traffic  Control  (ATC)  systems  are  highly  distributed  systems.  Nationwide 
distributed radars provide measurement data through digital wide area networks 
(WAN)  like  the  radar  data  network  (RADNET)  from an area  under  control  (e.g. 
Germany).  This radar data runs through a sequence of steps in the radar data 
processing systems (RDPS) on the air  navigation service providers (ANSP) side, 
before  it  is  displayed  on  a  so-called  controller  working  position  (CWP).  These 
processing steps are executed by many different processes in an Air Traffic Control 
(ATC) system on various computers connected via a local area network (LAN) or a 
wide area network. This distributed nature of ATC systems makes it difficult to get 
an insight view of these manifold processing steps and their performance as well 
as the throughput of radar data through the whole chain, thus being incompletely 
aware of all possible radar data processing bottlenecks.

To  improve  the  quality  control  technology  of  radar  data  processing  the  DFS 
instrumented the core functions of its operational radar data processing system 
PHOENIX [Euler, B.;  Heidger, R. (2007), Heidger, R. (2006)] to get an insight view 
of the performance of the distributed processing chain. PHOENIX is the operational 
RDPS at all  national  and international  airports in  Germany with more than 100 
deployed CWPs. Thus the system’s performance is directly linked with the German 
air traffic management efficiency, which is of vital interest for the DFS. The source 
code  instrumentation  for  that  analysis  was  implemented  with  the  Application 
Response  Measurement  (ARM)  standard  version  4.0  [The  Open  Group  (2004a)] 
from The Open Group and two ARM implementations,  among them the MyARM 
[Ruppert S. , Engels, K. MyARM GbR] as the ARM measurement and analysis tool.

2. The MyARM toolkit at a glance

The  MyARM  agent  implementation provides  full  compatibility  to  the  ARM  4.0 
standard for C and Java language bindings. With version 1.1.0 the Apache Portable 
Runtine (APR) library is used as the OS abstraction layer so MyARM will support 
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almost any UNIX®, Microsoft Windows® and MacOS X operating systems. It has a 
modular  backend/frontend  concept  supporting  various  kinds  of  efficient  data 
transport, i.e. shared memory or TCP/IP and storage mechanisms for the measured 
performance data, i.e.

● MySQL and SQLite and on demand any database which is supported by the 
APR database abstraction layer such as Oracle or Postgres database.

● XML files for ex- and import of measured ARM data.

MyARM provides three different kinds of analysis tools:

1. Command line tools for batch and mass data processing of ARM data.

2. Web-based analysis tools by using standard web-browsers like Mozilla Firefox 
or others to support remote and quick analysis of measured transactions.

3. Manager graphical user interface (Image 1) based on the Qt® 4 C++ class 
framework from the MyARM cooperation partner  Trolltech to analyse and 
manage measured ARM data.

Besides  the  ARM  agent  and  analysis  tools  MyARM  provides  ARM  4.x 
instrumentation support. With the QArm framework ARM 4.x instrumentation can 
easily be integrated into any Qt® 4 based application. Moreover,  instrumented 
versions of the popular SQL databases SQLite and MySQL can be downloaded from 
the MyARM web-site and last but not least our special and much improved version 
of the Apache 2.x mod_arm4 module is provided.

3. PHOENIX System architecture

PHOENIX is an efficient, distributed, client-server-based multi-radar tracking and 
air-situation display system, running on the Linux operating system. The PHOENIX 
multi-radar track server (MRTS) tracks radar measurement data by Kalman Filtering 
and  generates  aircraft  tracks,  which  are  representing  the  statistical  optimal 
estimation of the state of a aircraft flight. A message server correlates flight plan 
data to such tracks enabling controllers to get information about a flight on the 

Image 1: MyARM manager graph view



radar screen. 3 – 5 (at an airport tower) or up to 120 (in an area control center) 
controller working positions (CWP), which are running on specific client computers. 
The following diagram (Image 2) shows an example network configuration with one 
track server, one message server and three controller working positions running on 
different hosts in a network.

PHOENIX is far more complex than described above with more than 30 processes 
involved.  The processes we concentrate on in  this  evaluation  provide the core 
features of PHOENIX, therefore these processes have been instrumented with ARM. 
The instrumentation points are located in the processing steps depicted in Image
3, providing a measurement of the central processing points in the main data flow 
chain. Image 3 also shows the data flow as described above with a message server 
as relay between the tracker and the CWP. Only one CWP is shown in this image 
but, as depicted in Image 2, it can be more than one.

The plot to track processing inside MRTS includes the following processing steps:

● decodePlots is the parent transaction of all following processing steps, i.e. 
each redraw transaction in the CWP has exactly one decodePlot Transaction 
as parent. DecodePlots is divided into two sub transactions: Conversion and 
Correlate.

● Conversion is the transaction that converts the received ASTERIX plots into 
an internal format which can then be further processed.

● Correlate is  the  transaction  doing  the  main  work,  i.e.  either  correlating 
received plots to an existing track or creating a new track from a plot that 

Image 3: Data flow and instrumented processing steps of the PHOENIX configuration used 
for the ARM evaluation
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Image 2: Simplified PHOENIX network configuration



cannot  be correlated.  Moreover, a  decision  is  taken here whether  a  plot 
leads to a track update message or not.

The MSG has only one main processing step:

● TrackStore_updateTrack is the main processing loop of the MSG correlating 
flight  plan  information  to  each  received  track  update  and  forwarding  it 
further to the CWP.

The following steps take place in the controller working position:

● TrackStore_updateTrack is the same method using in MSG server since both 
rely on the same source code. In the CWP this is the main transaction calling 
TargetView_recalculate and  TargetView_redraw for  each  received  track 
update under normal circumstances (Standard-Mode). 

● TrackStore_updateTrackMPA:  In case the CWP works under heavy load an 
overload prevention algorithm is activated that collects all  received track 
updates and calls TargetView_recalculate and TargetView_redraw only every 
500  milliseconds  (Multiplot-Averaging  (MPA)  Mode).  This  mechanism  was 
introduced to avoid performance problems during high traffic load but until 
the ARM evaluation its efficiency could not yet be verified exactly.

● TargetView_recalculate recalculates the position of a received track update 
and prepares it for redrawing. 

● TargetView_redraw redraws the target on the screen.

Each processing step is modelled as a transaction, i.e. the duration of each step is 
measured  individually.  A  full  transaction  chain  starts  with  the  decodePlot 
transaction of MRTS and ends with the TargetView_redraw transaction of the CWP.

4. Scenarios und test environment

The performance of  PHOENIX was investigated with two types of  measurement 
scenarios.  The  first  scenario  type  consists  of  recorded  live  data  of  the  whole 
German air space, lasting about 30 minutes from 14:01:17 to 14:28.58. At that 
time  around  700  tracks  had  to  be  handled  by  PHOENIX.  Image  4 shows  the 
PHOENIX CWP presenting this scenario.

The  second  scenario  type  is  designed  for  high  load  analysis  and  consists  of 
artificial data with 3000 tracks flying in 30 circles, 100 flights each (see Image 13). 
Average german traffic load varies between 500 and 1200 tracks in total during 
daytime, with peaks to 2000 and drops to less than 100 during night time.

Image 5: Artificial data generated by the PHOENIX 
d-gen

Image 4: Recorded live data of the German airspace
  



Two different test beds were used during the evaluation. First, a standalone test 
bed with all  three instrumented processes running on one host communicating 
over the local loop back interface. This test bed was used to get impressions on 
performance bottlenecks  of  the applications.  Moreover,  besides  the single  host 
environment,  the instrumented applications were also executed in a distributed 
environment with one track server and 120 CWP computers to get measurement 
values in a realistic environment. The measured performance data of each run was 
stored in a MySQL database. After a scenario run the analysis of the data was 
conducted with the MyARM manager.

5. Synchronous vs. asynchronous duration

The  ARM  4.0  standard  is  designed  for  the 
measurement  of  a  synchronous  duration,  i.e. 
each parent transaction in a chain stops not till 
then  when its  child  transactions  have  finished 
since  it  waits  for  the  stop  call  of  the  child 
transaction (see Image 6 for an example).

In that standard case the duration of the parent 
transaction  t1 "includes" the duration  t2 and 
t3 of  its  children.  When looking at  the whole 
chain it  is enough to put the duration of each 
transaction in relation to the main duration to 
get  an  idea  where  a  high  delay  might  come 
from.

It  becomes  more  difficult  when  asynchronous 
relationships  exist,  i.e.  the  parent  transaction 
does not wait until the children have finished but 
stop the duration measurement asynchronously. 
In that case two possibilities exist  on how the 
asynchronous duration of the transaction chain 
can be computed.

The  first  possibility  is  to  compute  the 
asynchronous duration of the transaction 
chain  by  traversing  the  chain  from  the 
root  transaction  (i.e.  the  transaction  for 
which we want to know the asynchronous 
duration for) to the last child of the chain. 
The “last child” in that context means the 
leaf  in  the  transaction  chain  with  the 
highest  start  time.  The  asynchronous 
duration  is  then  computed  as  the  time 
difference between the stop time of  this 
last  child  and the start  time of  our  root 
transaction. This duration is referred to as 
“asynchronous  parent/child  duration”,  or 
APCD. 

Let  us  have  a  look  at  Image  7 as  an 
example. If we want to know the APCD of 
this  transaction  chain  we  compute  it  as 
follows.  First  we  look at  T3 which  is  the 
leaf  of  the chain  with  start  time t3.  The 
APCD of  T3 itself  is  T3 since T3 has no 

Image 7: Asynchronous parent child transaction 
duration 

Image 6: Synchronous transaction 
duration



children. Going up one level we compute the APCD of T2 as the time difference 
between t3 plust3 and t2.

APCDT2 = (t3 + t3) - t2

The APCD of T1 is then the time difference between t1 and t2 plus the APCD of T2. 

APCDT1 = (t3 + t3) - t1

The APCD can be understood as duration of the whole (sub-)chain.

The second possibility is to compute the chain duration starting from the leaves of 
a chain (which might be a tree). This is especially useful in cases where more than 
one leaf exists in a chain as depicted in Image 8. By traversing the tree from the 
leaf one transaction tree will produce as many asynchronous durations as there are 
leaves.  The  asynchronous  duration  computed  that  way  is  referred  to  as 
“asynchronous child parent duration” or ACPD. Image 8 shows exemplary how the 
ACPD is computed. The first duration value starts from transaction T4, adding the 
duration of T4 to the difference between t1 and t4 (i.e. taking the start time of the 
transactions  into  account  and  not  the  bare  duration  as  it  is  the  case  for 
synchronous duration computation). The whole ACPD for T4 is then computed as 

ACPDT4 = (t4 - t1) + t4

The second ACPD for T3 is computed the same way, i.e. 

ACPDT3 = (t3 - t1) + t3

The different levels of the ACPD can be computed by choosing the name of the 
transaction leaf and the level on which this leaf must exist. To get the ACPDT2/T4 the 
user would have chosen the transaction T2 as root transaction and T4 as last child 
on level 0 (relative to T2).

Both asynchronous durations should be used in cases 

Image 8: Asynchronous child parent transaction duration



● where transactions are asynchronously stopped, i.e.  do not wait  until  the 
child transactions have finished

● where all  clocks that  are  involved  in  the measurement  are  synchronised 
(otherwise the computation will deliver complete non sense data since the 
start time is used as reference for the computation). This has to be assured 
especially in distributed environments with the network time protocol (NTP) 
for instance.

Neither APCD nor ACPD values are covered  by the ARM 4.0 standard, i.e. these 
asynchronous durations where invented by MyARM to provide practical solutions in 
distributed environments where the synchronous duration does not give any hint of 
what is going on in the system.

6. ARM 4.1 and asynchronous durations

The ARM 4.1 [The Open Group (2007)] standard has been available since mid of 
2007 and it covers the need of asynchronously executing transactions. At the time 
the PHOENIX performance evaluation was made the ARM 4.1 standard had not 
been completed. The list below gives a brief overview of improvements of ARM 4.1 
which can be useful in the PHOENIX environment for future measurements:

● Correlators  can be marked as  “asynchronous”  to  indicate  the correlation 
between  two  transactions  is  asynchronous  in  nature  (e.g.  no  typical 
client/server  transaction).  Analysis  tools  can  then  correctly  differentiate 
between synchronous and asynchronous transaction correlation  thus it  is 
now possible to have a mixture of such transaction relationships. 

● Correlators can be marked as independent to indicate that the status and 
duration of the child transaction does not influence the status and duration 
of the parent transaction. In the PHOENIX environment it  does not make 
sense to mark a transaction executed within the tracker to be FAILED if a 
transaction failed in the CWP. 

● A  the  new  instrumentation  control  interface  of  ARM  4.1  is  available  to 
optimize the ARM agent to reduce the ARM processing to a minimum within 
the instrumented application (if the ARM agent supports it).

Other improvements of the ARM 4.1 standard do not greatly matter in the PHOENIX 
environment and are therefore out of scope in this environment.

7. Duration of processing chains

A main requirement at DFS is that the delay between the reception of radar data 
and the presentation of that data to the controller should not exceed one second. 

However,  most  of  the computers used in ATC systems today are not  real  time 
systems therefore this requirement can not be an absolute hard limit. It has to be 

Image 9: The main transaction chain and the sub transaction chains
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statistically  significant. The  main  aim  of  the  following  measurements  is  the 
inspection  of  this  requirement  in  the  different  environments.  It  was  found  out 
during the tests that mainly 3 transaction chains are of greater interest. The main 
transaction  chain  (MRTS->MSG->CWP,  marked blue  in  Image 9)  lasts  from the 
beginning of MRTS::decodePlot until the end of CWP::TargetView_redraw. The first 
child transaction chain (MRTS->MSG, marked red in Image 9) lasts from beginning 
of  MRTS::decodePlot until  the end of  MSG::TrackStore_updateTrack including the 
communication  between  MRTS  and  MSG.  The  second  child  transaction  chain 
(MRTS->MSG,  marked  green  in  Image  9)  lasts  from  the  beginning  of 
MSG::TrackStore_updateTrack until the end of  CWP::TargetView_redraw, including 
the communication between MSG and CWP.

8. Distributed test bed, live scenario

In  the  distributed  environment  the  live  scenario  was  further  investigated.  The 
heavy  load scenario  was not  taken into  account  in  this  environment  since  the 

amount of data would have been too great. 1 MRTS, 1 MSG and 110 CWPs were 
used for this test since 10 CWPs were shut down due to maintenance reasons. 
Image 10 shows the  histogram and statistical  parameters  of  durations  for  the 
whole  processing  chain  (MRTS->MSG->CWP)  of  the  live  scenario  in  this 
environment,  produced  with  the  new  frequency  histogram  visualisation  and 
distribution parameter calculator of the tool. The analysis of the measurement data 
in this test bed shows the following results:

Image 10: The main transaction chain with live data in the distributed test bed



● Almost  all  processing  chains  fit  into  the  “one  second”  performance 
requirement (mean duration 137.038 milliseconds with a standard deviation 
of ~229 milliseconds). To analyse the maximum duration values shown in 
Image 10 (Maximum ~7835 milliseconds) the command line tools were used 
to extract all durations and processed with statistical scripts. The result is 
that less than 0,3% of all chain durations are above one second. Moreover 
only 712 (~0,26% of the measurement population) single chain durations 
were above the 3-Sigma (792 ms) interval (3 times of the standard deviation 
around  the  median  value).  This  fits  exactly  in  the  3-sigma  probability 
(99,73%) of normal distributed measurements and is therefore statistically 
significant. Last but not least the reason for high chain durations of a few 
measurements should be further investigated to get a better understanding 
of what is going on even in rare situations (such as CPU bottlenecks, waits in 
queues or network transmitting collisions for example). 

● 110 of 120 CWPs were used so the amount of main transaction chains were 
multiplied by 110, leading to over 277000 measured chains.

● A  minimum  value  of  2.7  milliseconds  can  be  explained  by  NTP 
synchronization variations, i.e. the receiving computer has a time delay that 
is almost equivalent to the measured duration.

Image 11: The main transaction chain in MPA mode



The histogram shown in Image 10 was produced by investigating the ACPD chain 
duration between  MRTS::decodePlot and  CWP::redraw without taking the level of 
the CWP::redraw into account (i.e. the level was ANY). 

It is also interesting to see the difference between the chain duration in normal and 
in  MPA mode.  To  achieve  this,  two child  levels  had  to  be  investigated  for  the 
statistics and curve computation, namely level 4 for normal mode and level 5 for 
MPA mode:

Level 4 (normal mode) Level 5 (MPA mode)
MRTS::decodePlot

MRTS::Correlation
MSG::UpdateTrack

CWP::UpdateTrack
CWP::redraw

MRTS::decodePlot
MRTS::Correlation

MSG::UpdateTrack
CWP::UpdateTrack

CWP::UpdateTrackMPA
CWP::redraw

The tool-generated scattergram in Image 11 shows the expected behaviour related 
to the chain duration, i.e. in MPA mode the mean duration with ~373 ms is much 

higher than the mean duration of the transaction chains in normal mode (~114 ms 
in Image 12). In this mode all received track updates are collected but not directly 

Image 12: The main transaction chain in normal mode



processed to display (via  redraw and  recalculate).  The tracks are drawn on the 
display timer driven every 500 milliseconds and not each time a track is updated.

This is the expected behaviour since the aim of the MPA mode is the optimization 
of CPU usage by drawing many targets with just one call instead of drawing each 
target individually. This aim can only be achieved by collecting targets for a certain 
amount  of  time  thus  increasing  the  duration  of  their  travel  time.  The  mean 
duration does not have a value of 500 milliseconds (the MPA mode forces a target 
draw at that rate) since targets are received in the whole 500 millisecond interval 
thus 500 milliseconds is  the worse case for  the waiting time in  MPA mode for 
drawing a track update.

9. Standalone system, heavy load scenario (3000 tracks)

The next tests were made in the standalone environment but with the heavy load 
scenario  with  3000  tracks. Image  13 shows  the  scattergram  of  the  main 
transaction  chain  and  its  statistical  values  for  that  situation.  The  number  of 
measured transactions is only 3126 because of the small scenario duration of 10 
minutes. The mean duration is around ~1048 milliseconds and therefore almost 10 
times higher than the mean duration in the live scenario. This high value can be 
explained by the fact that the computer where these values where measured is 
working with a very high CPU load, because MRTS, MSG and the CWP running on 
the same computer, thus consuming more CPU time. The CWP is trying to reduce 
CPU load by switching into MPA mode. However, even this mode is not successful 
enough to reduce the overall CPU consumption (due to the other processes on this 
computer) so the mean duration value is still much higher than the one measured 
in the live scenario above.

Image 13: The main transaction chain and statistics with heavy load



Nevertheless  the  MPA mode is  successful since the duration in non MPA mode 
increases rapidly when the CWP switches back to that mode. The CWP rechecks 
this  decision  every  25  seconds.  Shortly  after  the  mode switch  the  CWP again 
detects a higher CPU consumption so it switches back to the MPA mode for the 
next  25  seconds  and  so  forth.  Image  14  exemplarily  shows  for  the  second 
transaction  chain  (MSG->CWP)  the  transition  between  these  modes  for  two 
adjacent peaks. 

Summing  up  the  findings  of  the 
evaluation of this scenario it can be 
said that

● The  mean  time  needed  to 
present a track update to a 
controller  is  above  one 
second  (1048.43 
milliseconds)  in  this  high 
load scenario.

● Maximum durations of more 
than 4 seconds occur caused 
by  the  CWP  switching 
between standard mode and 
MPA  mode.  Usage  of  MPA 
mode  shows  the  desired 
effects  otherwise  the  CWP 
would  not  switch  back  to 
standard  mode. 
Nevertheless  the  criteria  to 
switch between these modes 
have to be checked.

10.Summary and perspective

The ARM instrumentation of PHOENIX and resulting measurement data analysis 
provide a detailed insight view of the duration of the important processing steps of 
PHOENIX. Moreover, an overview could be generated of the whole processing chain 
starting from the point in time when a plot is received by the tracker until it is 
presented to the controller at the CWP. The main findings were:

● The mean duration needed to present a track update to a controller in an 
operational environment and under realistic conditions is with a statistically 
population of more than 99,7% (3-sigma interval) below one second.

● This is not true in a situation with a scenario of 3000 tracks running on one 
standalone computer.  The  mean value here is 1048 milliseconds.  A wrong 
decision of the CWP to switch from MPA mode back to non MPA mode is 
responsible for high duration peaks up to 4 seconds thus also increasing the 
mean value.  The aim here must be to improve the observed mode change 
behaviour of the CWP thanks to the observations made with ARM. This test 
can then be repeated with an optimized CWP.

● Other side effects were found which could not be presented in detail here. 
For example a mechanism that was introduced to minimize network load has 
the side effect that the mean overall duration is more than 200 times higher 
than the time the processes need for their internal computation. This effect 
is explained with process internal buffering of network packets before these 
are  sent  out  on  the  network.  It  must  be  discussed  how these  buffering 

Image 14: The main transaction chain with heavy load



algorithms  in  the  different  processes  can  be  adapted  to  get  a  faster 
throughput.

A  continued use  of  ARM  in  the  software  development  process  of  PHOENIX  is 
planned. A permanent performance monitoring of the system shall be introduced 
to control performance behaviour during the software development period with its 
various  code  modifications  and  its  effects.  Also  semi-automatic  ARM 
instrumentation would be helpful  using a pre-compiler which can generate ARM 
code on the fly. This may be achieved by a modified MOC (meta object compiler) 
utility of the Qt® C++ framework using MyARM's QArm [Engels,  K.,  Ruppert  S.
(2005)] framework.

In  operational  context  a  permanent  performance  management  using  ARM 
measurements  can  provide  a  “real-time”  throughput  information  of  single 
components and an end-to-end response time of the whole ATC system processing 
chain to the system management. At ANSP's the system management is in charge 
to control daily system opertaions and to provide first level support. This way the 
system management would have a chance to detect performance problems just 
when the system “starts to become slow”. Moreover, the information about the 
cause of a performance problem (e.g. a radar producing irregular data) would be 
very well known due to the measurement granularity.

11.Abbreviations and references

ANSP Air navigation service 
provider

MPA Multiplot Averaging

ARM Application Response 
Measurement

MRTS Multi-Radar Track Server

ASTERIX All Purpose Structured 
EUROCONTROL Radar 
Information Exchange 
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MSG Message Server

ATC Air Traffic Control NTP Network time protocol
CWP Controller Working 

Position
RADNET Radar data network

DFS Deutsche Flugsicherung WAN Wide Area Network
LAN Local Area Network
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