
ARM instrumentation of the PHOENIX ATC System for
Performance evaluation

Dr. Kai Engels, MyARM GbR; and DFS SH/T
Ralf Heidger, DFS Systemhaus (SH), Head of SH/T

Stefan Ruppert, MyARM GbR

Dr. Kai Engels, Stefan Ruppert
MyARM GbR

Neue Str. 4; 63571 Gelnhausen­Roth; Germany
Phone: +49 6192/9772818

Fax +49 6192/9772819
web: http://www.myarm.de

email: info@myarm.de

Ralf Heidger
DFS Deutsche Flugsicherung GmbH

Systemhaus; SH/T
Am DFS Campus 7; 63225 Langen; Germany

Phone: +49 6103/707­2520
Fax: +49 6103/707­2595

email: ralf.heidger@dfs.de

1. Introduction

Air Traffic Control (ATC) systems are highly distributed systems. Nationwide
distributed radars provide measurement data through digital wide area networks
(WAN) like the radar data network (RADNET) from an area under control (e.g.
Germany). This radar data runs through a sequence of steps in the radar data
processing systems (RDPS) on the air navigation service providers (ANSP) side,
before it is displayed on a so-called controller working position (CWP). These
processing steps are executed by many different processes in an Air Traffic Control
(ATC) system on various computers connected via a local area network (LAN) or a
wide area network. This distributed nature of ATC systems makes it difficult to get
an insight view of these manifold processing steps and their performance as well
as the throughput of radar data through the whole chain, thus being incompletely
aware of all possible radar data processing bottlenecks.

To improve the quality control technology of radar data processing the DFS
instrumented the core functions of its operational radar data processing system
PHOENIX [Euler, B.; Heidger, R. (2007), Heidger, R. (2006)] to get an insight view
of the performance of the distributed processing chain. PHOENIX is the operational
RDPS at all national and international airports in Germany with more than 100
deployed CWPs. Thus the system’s performance is directly linked with the German
air traffic management efficiency, which is of vital interest for the DFS. The source
code instrumentation for that analysis was implemented with the Application
Response Measurement (ARM) standard version 4.0 [The Open Group (2004a)]
from The Open Group and two ARM implementations, among them the MyARM
[Ruppert S. , Engels, K. MyARM GbR] as the ARM measurement and analysis tool.

2. The MyARM toolkit at a glance

The MyARM agent implementation provides full compatibility to the ARM 4.0
standard for C and Java language bindings. With version 1.1.0 the Apache Portable
Runtine (APR) library is used as the OS abstraction layer so MyARM will support

http://www.myarm.de/
http://www.myarm.de/
http://www.myarm.de/

almost any UNIX®, Microsoft Windows® and MacOS X operating systems. It has a
modular backend/frontend concept supporting various kinds of efficient data
transport, i.e. shared memory or TCP/IP and storage mechanisms for the measured
performance data, i.e.

● MySQL and SQLite and on demand any database which is supported by the
APR database abstraction layer such as Oracle or Postgres database.

● XML files for ex- and import of measured ARM data.

MyARM provides three different kinds of analysis tools:

1. Command line tools for batch and mass data processing of ARM data.

2. Web-based analysis tools by using standard web-browsers like Mozilla Firefox
or others to support remote and quick analysis of measured transactions.

3. Manager graphical user interface (Image 1) based on the Qt® 4 C++ class
framework from the MyARM cooperation partner Trolltech to analyse and
manage measured ARM data.

Besides the ARM agent and analysis tools MyARM provides ARM 4.x
instrumentation support. With the QArm framework ARM 4.x instrumentation can
easily be integrated into any Qt® 4 based application. Moreover, instrumented
versions of the popular SQL databases SQLite and MySQL can be downloaded from
the MyARM web-site and last but not least our special and much improved version
of the Apache 2.x mod_arm4 module is provided.

3. PHOENIX System architecture

PHOENIX is an efficient, distributed, client-server-based multi-radar tracking and
air-situation display system, running on the Linux operating system. The PHOENIX
multi-radar track server (MRTS) tracks radar measurement data by Kalman Filtering
and generates aircraft tracks, which are representing the statistical optimal
estimation of the state of a aircraft flight. A message server correlates flight plan
data to such tracks enabling controllers to get information about a flight on the

Image 1: MyARM manager graph view

radar screen. 3 – 5 (at an airport tower) or up to 120 (in an area control center)
controller working positions (CWP), which are running on specific client computers.
The following diagram (Image 2) shows an example network configuration with one
track server, one message server and three controller working positions running on
different hosts in a network.

PHOENIX is far more complex than described above with more than 30 processes
involved. The processes we concentrate on in this evaluation provide the core
features of PHOENIX, therefore these processes have been instrumented with ARM.
The instrumentation points are located in the processing steps depicted in Image
3, providing a measurement of the central processing points in the main data flow
chain. Image 3 also shows the data flow as described above with a message server
as relay between the tracker and the CWP. Only one CWP is shown in this image
but, as depicted in Image 2, it can be more than one.

The plot to track processing inside MRTS includes the following processing steps:

● decodePlots is the parent transaction of all following processing steps, i.e.
each redraw transaction in the CWP has exactly one decodePlot Transaction
as parent. DecodePlots is divided into two sub transactions: Conversion and
Correlate.

● Conversion is the transaction that converts the received ASTERIX plots into
an internal format which can then be further processed.

● Correlate is the transaction doing the main work, i.e. either correlating
received plots to an existing track or creating a new track from a plot that

Image 3: Data flow and instrumented processing steps of the PHOENIX configuration used
for the ARM evaluation

MRTS MSG CWPPlayback Plots Tracks Tracks

decodePlots
 Conversion
 Correlate

TrackStore_updateTrack

MPA-Mode
TrackStore_updateTrack
 TrackStore_updateTrackMPA
 TargetView_recalculate
 TargetView_redraw

Standard-Mode
TrackStore_updateTrack
 TargetView_recalculate
 TargetView_redraw

Image 2: Simplified PHOENIX network configuration

cannot be correlated. Moreover, a decision is taken here whether a plot
leads to a track update message or not.

The MSG has only one main processing step:

● TrackStore_updateTrack is the main processing loop of the MSG correlating
flight plan information to each received track update and forwarding it
further to the CWP.

The following steps take place in the controller working position:

● TrackStore_updateTrack is the same method using in MSG server since both
rely on the same source code. In the CWP this is the main transaction calling
TargetView_recalculate and TargetView_redraw for each received track
update under normal circumstances (Standard-Mode).

● TrackStore_updateTrackMPA: In case the CWP works under heavy load an
overload prevention algorithm is activated that collects all received track
updates and calls TargetView_recalculate and TargetView_redraw only every
500 milliseconds (Multiplot-Averaging (MPA) Mode). This mechanism was
introduced to avoid performance problems during high traffic load but until
the ARM evaluation its efficiency could not yet be verified exactly.

● TargetView_recalculate recalculates the position of a received track update
and prepares it for redrawing.

● TargetView_redraw redraws the target on the screen.

Each processing step is modelled as a transaction, i.e. the duration of each step is
measured individually. A full transaction chain starts with the decodePlot
transaction of MRTS and ends with the TargetView_redraw transaction of the CWP.

4. Scenarios und test environment

The performance of PHOENIX was investigated with two types of measurement
scenarios. The first scenario type consists of recorded live data of the whole
German air space, lasting about 30 minutes from 14:01:17 to 14:28.58. At that
time around 700 tracks had to be handled by PHOENIX. Image 4 shows the
PHOENIX CWP presenting this scenario.

The second scenario type is designed for high load analysis and consists of
artificial data with 3000 tracks flying in 30 circles, 100 flights each (see Image 13).
Average german traffic load varies between 500 and 1200 tracks in total during
daytime, with peaks to 2000 and drops to less than 100 during night time.

Image 5: Artificial data generated by the PHOENIX
d-gen

Image 4: Recorded live data of the German airspace

Two different test beds were used during the evaluation. First, a standalone test
bed with all three instrumented processes running on one host communicating
over the local loop back interface. This test bed was used to get impressions on
performance bottlenecks of the applications. Moreover, besides the single host
environment, the instrumented applications were also executed in a distributed
environment with one track server and 120 CWP computers to get measurement
values in a realistic environment. The measured performance data of each run was
stored in a MySQL database. After a scenario run the analysis of the data was
conducted with the MyARM manager.

5. Synchronous vs. asynchronous duration

The ARM 4.0 standard is designed for the
measurement of a synchronous duration, i.e.
each parent transaction in a chain stops not till
then when its child transactions have finished
since it waits for the stop call of the child
transaction (see Image 6 for an example).

In that standard case the duration of the parent
transaction t1 "includes" the duration t2 and
t3 of its children. When looking at the whole
chain it is enough to put the duration of each
transaction in relation to the main duration to
get an idea where a high delay might come
from.

It becomes more difficult when asynchronous
relationships exist, i.e. the parent transaction
does not wait until the children have finished but
stop the duration measurement asynchronously.
In that case two possibilities exist on how the
asynchronous duration of the transaction chain
can be computed.

The first possibility is to compute the
asynchronous duration of the transaction
chain by traversing the chain from the
root transaction (i.e. the transaction for
which we want to know the asynchronous
duration for) to the last child of the chain.
The “last child” in that context means the
leaf in the transaction chain with the
highest start time. The asynchronous
duration is then computed as the time
difference between the stop time of this
last child and the start time of our root
transaction. This duration is referred to as
“asynchronous parent/child duration”, or
APCD.

Let us have a look at Image 7 as an
example. If we want to know the APCD of
this transaction chain we compute it as
follows. First we look at T3 which is the
leaf of the chain with start time t3. The
APCD of T3 itself is T3 since T3 has no

Image 7: Asynchronous parent child transaction
duration

Image 6: Synchronous transaction
duration

children. Going up one level we compute the APCD of T2 as the time difference
between t3 plust3 and t2.

APCDT2 = (t3 + t3) - t2

The APCD of T1 is then the time difference between t1 and t2 plus the APCD of T2.

APCDT1 = (t3 + t3) - t1

The APCD can be understood as duration of the whole (sub-)chain.

The second possibility is to compute the chain duration starting from the leaves of
a chain (which might be a tree). This is especially useful in cases where more than
one leaf exists in a chain as depicted in Image 8. By traversing the tree from the
leaf one transaction tree will produce as many asynchronous durations as there are
leaves. The asynchronous duration computed that way is referred to as
“asynchronous child parent duration” or ACPD. Image 8 shows exemplary how the
ACPD is computed. The first duration value starts from transaction T4, adding the
duration of T4 to the difference between t1 and t4 (i.e. taking the start time of the
transactions into account and not the bare duration as it is the case for
synchronous duration computation). The whole ACPD for T4 is then computed as

ACPDT4 = (t4 - t1) + t4

The second ACPD for T3 is computed the same way, i.e.

ACPDT3 = (t3 - t1) + t3

The different levels of the ACPD can be computed by choosing the name of the
transaction leaf and the level on which this leaf must exist. To get the ACPDT2/T4 the
user would have chosen the transaction T2 as root transaction and T4 as last child
on level 0 (relative to T2).

Both asynchronous durations should be used in cases

Image 8: Asynchronous child parent transaction duration

● where transactions are asynchronously stopped, i.e. do not wait until the
child transactions have finished

● where all clocks that are involved in the measurement are synchronised
(otherwise the computation will deliver complete non sense data since the
start time is used as reference for the computation). This has to be assured
especially in distributed environments with the network time protocol (NTP)
for instance.

Neither APCD nor ACPD values are covered by the ARM 4.0 standard, i.e. these
asynchronous durations where invented by MyARM to provide practical solutions in
distributed environments where the synchronous duration does not give any hint of
what is going on in the system.

6. ARM 4.1 and asynchronous durations

The ARM 4.1 [The Open Group (2007)] standard has been available since mid of
2007 and it covers the need of asynchronously executing transactions. At the time
the PHOENIX performance evaluation was made the ARM 4.1 standard had not
been completed. The list below gives a brief overview of improvements of ARM 4.1
which can be useful in the PHOENIX environment for future measurements:

● Correlators can be marked as “asynchronous” to indicate the correlation
between two transactions is asynchronous in nature (e.g. no typical
client/server transaction). Analysis tools can then correctly differentiate
between synchronous and asynchronous transaction correlation thus it is
now possible to have a mixture of such transaction relationships.

● Correlators can be marked as independent to indicate that the status and
duration of the child transaction does not influence the status and duration
of the parent transaction. In the PHOENIX environment it does not make
sense to mark a transaction executed within the tracker to be FAILED if a
transaction failed in the CWP.

● A the new instrumentation control interface of ARM 4.1 is available to
optimize the ARM agent to reduce the ARM processing to a minimum within
the instrumented application (if the ARM agent supports it).

Other improvements of the ARM 4.1 standard do not greatly matter in the PHOENIX
environment and are therefore out of scope in this environment.

7. Duration of processing chains

A main requirement at DFS is that the delay between the reception of radar data
and the presentation of that data to the controller should not exceed one second.

However, most of the computers used in ATC systems today are not real time
systems therefore this requirement can not be an absolute hard limit. It has to be

Image 9: The main transaction chain and the sub transaction chains
MRTS->MSG->CWP

MRTS->MSG

MSG->CWP

MRTS MSG CWPPlayback Plots Tracks Tracks

statistically significant. The main aim of the following measurements is the
inspection of this requirement in the different environments. It was found out
during the tests that mainly 3 transaction chains are of greater interest. The main
transaction chain (MRTS->MSG->CWP, marked blue in Image 9) lasts from the
beginning of MRTS::decodePlot until the end of CWP::TargetView_redraw. The first
child transaction chain (MRTS->MSG, marked red in Image 9) lasts from beginning
of MRTS::decodePlot until the end of MSG::TrackStore_updateTrack including the
communication between MRTS and MSG. The second child transaction chain
(MRTS->MSG, marked green in Image 9) lasts from the beginning of
MSG::TrackStore_updateTrack until the end of CWP::TargetView_redraw, including
the communication between MSG and CWP.

8. Distributed test bed, live scenario

In the distributed environment the live scenario was further investigated. The
heavy load scenario was not taken into account in this environment since the

amount of data would have been too great. 1 MRTS, 1 MSG and 110 CWPs were
used for this test since 10 CWPs were shut down due to maintenance reasons.
Image 10 shows the histogram and statistical parameters of durations for the
whole processing chain (MRTS->MSG->CWP) of the live scenario in this
environment, produced with the new frequency histogram visualisation and
distribution parameter calculator of the tool. The analysis of the measurement data
in this test bed shows the following results:

Image 10: The main transaction chain with live data in the distributed test bed

● Almost all processing chains fit into the “one second” performance
requirement (mean duration 137.038 milliseconds with a standard deviation
of ~229 milliseconds). To analyse the maximum duration values shown in
Image 10 (Maximum ~7835 milliseconds) the command line tools were used
to extract all durations and processed with statistical scripts. The result is
that less than 0,3% of all chain durations are above one second. Moreover
only 712 (~0,26% of the measurement population) single chain durations
were above the 3-Sigma (792 ms) interval (3 times of the standard deviation
around the median value). This fits exactly in the 3-sigma probability
(99,73%) of normal distributed measurements and is therefore statistically
significant. Last but not least the reason for high chain durations of a few
measurements should be further investigated to get a better understanding
of what is going on even in rare situations (such as CPU bottlenecks, waits in
queues or network transmitting collisions for example).

● 110 of 120 CWPs were used so the amount of main transaction chains were
multiplied by 110, leading to over 277000 measured chains.

● A minimum value of 2.7 milliseconds can be explained by NTP
synchronization variations, i.e. the receiving computer has a time delay that
is almost equivalent to the measured duration.

Image 11: The main transaction chain in MPA mode

The histogram shown in Image 10 was produced by investigating the ACPD chain
duration between MRTS::decodePlot and CWP::redraw without taking the level of
the CWP::redraw into account (i.e. the level was ANY).

It is also interesting to see the difference between the chain duration in normal and
in MPA mode. To achieve this, two child levels had to be investigated for the
statistics and curve computation, namely level 4 for normal mode and level 5 for
MPA mode:

Level 4 (normal mode) Level 5 (MPA mode)
MRTS::decodePlot

MRTS::Correlation
MSG::UpdateTrack

CWP::UpdateTrack
CWP::redraw

MRTS::decodePlot
MRTS::Correlation

MSG::UpdateTrack
CWP::UpdateTrack

CWP::UpdateTrackMPA
CWP::redraw

The tool-generated scattergram in Image 11 shows the expected behaviour related
to the chain duration, i.e. in MPA mode the mean duration with ~373 ms is much

higher than the mean duration of the transaction chains in normal mode (~114 ms
in Image 12). In this mode all received track updates are collected but not directly

Image 12: The main transaction chain in normal mode

processed to display (via redraw and recalculate). The tracks are drawn on the
display timer driven every 500 milliseconds and not each time a track is updated.

This is the expected behaviour since the aim of the MPA mode is the optimization
of CPU usage by drawing many targets with just one call instead of drawing each
target individually. This aim can only be achieved by collecting targets for a certain
amount of time thus increasing the duration of their travel time. The mean
duration does not have a value of 500 milliseconds (the MPA mode forces a target
draw at that rate) since targets are received in the whole 500 millisecond interval
thus 500 milliseconds is the worse case for the waiting time in MPA mode for
drawing a track update.

9. Standalone system, heavy load scenario (3000 tracks)

The next tests were made in the standalone environment but with the heavy load
scenario with 3000 tracks. Image 13 shows the scattergram of the main
transaction chain and its statistical values for that situation. The number of
measured transactions is only 3126 because of the small scenario duration of 10
minutes. The mean duration is around ~1048 milliseconds and therefore almost 10
times higher than the mean duration in the live scenario. This high value can be
explained by the fact that the computer where these values where measured is
working with a very high CPU load, because MRTS, MSG and the CWP running on
the same computer, thus consuming more CPU time. The CWP is trying to reduce
CPU load by switching into MPA mode. However, even this mode is not successful
enough to reduce the overall CPU consumption (due to the other processes on this
computer) so the mean duration value is still much higher than the one measured
in the live scenario above.

Image 13: The main transaction chain and statistics with heavy load

Nevertheless the MPA mode is successful since the duration in non MPA mode
increases rapidly when the CWP switches back to that mode. The CWP rechecks
this decision every 25 seconds. Shortly after the mode switch the CWP again
detects a higher CPU consumption so it switches back to the MPA mode for the
next 25 seconds and so forth. Image 14 exemplarily shows for the second
transaction chain (MSG->CWP) the transition between these modes for two
adjacent peaks.

Summing up the findings of the
evaluation of this scenario it can be
said that

● The mean time needed to
present a track update to a
controller is above one
second (1048.43
milliseconds) in this high
load scenario.

● Maximum durations of more
than 4 seconds occur caused
by the CWP switching
between standard mode and
MPA mode. Usage of MPA
mode shows the desired
effects otherwise the CWP
would not switch back to
standard mode.
Nevertheless the criteria to
switch between these modes
have to be checked.

10.Summary and perspective

The ARM instrumentation of PHOENIX and resulting measurement data analysis
provide a detailed insight view of the duration of the important processing steps of
PHOENIX. Moreover, an overview could be generated of the whole processing chain
starting from the point in time when a plot is received by the tracker until it is
presented to the controller at the CWP. The main findings were:

● The mean duration needed to present a track update to a controller in an
operational environment and under realistic conditions is with a statistically
population of more than 99,7% (3-sigma interval) below one second.

● This is not true in a situation with a scenario of 3000 tracks running on one
standalone computer. The mean value here is 1048 milliseconds. A wrong
decision of the CWP to switch from MPA mode back to non MPA mode is
responsible for high duration peaks up to 4 seconds thus also increasing the
mean value. The aim here must be to improve the observed mode change
behaviour of the CWP thanks to the observations made with ARM. This test
can then be repeated with an optimized CWP.

● Other side effects were found which could not be presented in detail here.
For example a mechanism that was introduced to minimize network load has
the side effect that the mean overall duration is more than 200 times higher
than the time the processes need for their internal computation. This effect
is explained with process internal buffering of network packets before these
are sent out on the network. It must be discussed how these buffering

Image 14: The main transaction chain with heavy load

algorithms in the different processes can be adapted to get a faster
throughput.

A continued use of ARM in the software development process of PHOENIX is
planned. A permanent performance monitoring of the system shall be introduced
to control performance behaviour during the software development period with its
various code modifications and its effects. Also semi-automatic ARM
instrumentation would be helpful using a pre-compiler which can generate ARM
code on the fly. This may be achieved by a modified MOC (meta object compiler)
utility of the Qt® C++ framework using MyARM's QArm [Engels, K., Ruppert S.
(2005)] framework.

In operational context a permanent performance management using ARM
measurements can provide a “real-time” throughput information of single
components and an end-to-end response time of the whole ATC system processing
chain to the system management. At ANSP's the system management is in charge
to control daily system opertaions and to provide first level support. This way the
system management would have a chance to detect performance problems just
when the system “starts to become slow”. Moreover, the information about the
cause of a performance problem (e.g. a radar producing irregular data) would be
very well known due to the measurement granularity.

11.Abbreviations and references

ANSP Air navigation service
provider

MPA Multiplot Averaging

ARM Application Response
Measurement

MRTS Multi-Radar Track Server

ASTERIX All Purpose Structured
EUROCONTROL Radar
Information Exchange
Format

MSG Message Server

ATC Air Traffic Control NTP Network time protocol
CWP Controller Working

Position
RADNET Radar data network

DFS Deutsche Flugsicherung WAN Wide Area Network
LAN Local Area Network

1) Euler, B.; Heidger, R. (2007); et al.: PHOENIX Systemhandbuch. DFS, Version 3.0,
20.6.2007

2) Heidger, R. (2006): A new generation RDP fallback system in the DFS. European Journal
of Navigation, Sept. 2006.

3) The Open Group (2004a): Technical Standard: Application Response Measurement
(ARM) Issue 4.0, V2 - C Binding, Berkshire, United Kingdom, ISBN: 1931624380

4) Ruppert S. , Engels, K. MyARM GbR website http://www.myarm.de
5) The Open Group (2007): Technical Standard: Application Response Measurement (ARM)

Issue 4.1, V1 - C Binding, Berkshire, United Kingdom, ISBN: 1931624747
6) Engels, K., Ruppert S. (2005), QArm Tutorial, Version 1.0, MyARM GbR, Gelnhausen,

December 2005

http://www.opengroup.org/bookstore/catalog/c071.htm
http://www.opengroup.org/bookstore/catalog/c071.htm
http://www.opengroup.org/bookstore/catalog/c071.htm
http://www.opengroup.org/bookstore/catalog/c071.htm
http://www.opengroup.org/bookstore/catalog/c071.htm
http://www.opengroup.org/bookstore/catalog/c071.htm
http://www.myarm.de/
http://www.myarm.de/
http://www.myarm.de/
http://www.opengroup.org/bookstore/catalog/c041.htm
http://www.opengroup.org/bookstore/catalog/c041.htm
http://www.opengroup.org/bookstore/catalog/c041.htm
http://www.opengroup.org/bookstore/catalog/c041.htm
http://www.opengroup.org/bookstore/catalog/c041.htm
http://www.opengroup.org/bookstore/catalog/c041.htm

